
1. Introduction
Radiant energy emitted from fires, usually referred to as Fire Radiative Energy (FRE), and its instantaneous 
counterpart, Fire Radiative Power (FRP) (Wooster & Zhang, 2004), have been found to be highly correlated 
with fuel mass loss and smoke concentrations, and thus have been used to estimate smoke emissions (Freeborn 
et al., 2008; Ichoku et al., 2008; Wooster, 2002). Spaceborne imagers are able to provide accurate FRP estimates 
(Wooster et al., 2005), which are used to derive trace gas and aerosol emissions from fires with global coverage 
(e.g., Darmenov and da Silva, 2015; Ichoku & Ellison, 2014; Kaiser et al., 2012). FRP and derived emissions are 
used in a variety of applications ranging from air quality forecasts (Ye et al., 2021) and atmospheric composition 
reanalysis (Buchard et al., 2017; Inness et al., 2019) to smoke impacts on health (O’Neill et al., 2021) and the 
influence on the earth's radiative budget (Carter et al., 2020). While most applications have used FRP retrievals 
from low-earth orbiting (LEO) satellites to provide daily emission estimates, FRP from a new generation of 
geostationary (GEO) sensors has been shown to be effective at capturing smoke in finer temporal resolutions 
(Wiggins et al., 2020) and led to the development of hourly smoke emissions estimates combining LEO and GEO 
data (Li et al., 2022).

While FRP derived emissions are extremely useful, they do come with associated uncertainties. For instance, FRP 
retrievals are unreliable or not possible when the fire is blocked by clouds (Schmidt et al., 2010). Additionally, it 
has been found that smoke emissions are generally underpredicted for extreme fire events (Saide et al., 2015; van 
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der Velde et al., 2021), with potential causes including instrument saturation, the FRP algorithm not being able 
to find non-fire pixels needed for the retrievals, and obscuration by thick smoke or fire-generated clouds such as 
pyro-cumulus and pyro-cumulonimbus (Justice et al., 2006; Li et al., 2021, 2022). Also, there are large uncertain-
ties in nighttime GEO FRP (Li et al., 2022). Thus, alternative ways to derive FRP or smoke emissions at similar 
spatial and temporal resolutions are desirable to use as complimentary information.

Weather radars have been demonstrated as an effective tool to profile wildfire plumes due to their ability to detect 
pyrometeors, defined as lofted biomass burning debris typically above 1 mm in diameter (McCarthy et al., 2019). 
Some applications include determination of smoke injection height (Jones & Christopher, 2009), speciation of 
pyrometeors (e.g., firebrands vs. ash) for spot fire risk prediction (McCarthy et al., 2020), estimating fire perime-
ter and rate of spread (Lareau, Donohoe, et al., 2022), studying pyroconvection (Kingsmill et al., 2023; Peterson 
et al., 2022) and fire-generated tornadic vortices (Lareau, Nauslar, et al., 2022), and investigating the microphys-
ics, thermodynamics, and fire behavior feedback of wildfire plumes (McCarthy et al., 2019). While efforts have 
explored associations between fire area and radar plume area (Price et al., 2018), to our knowledge, there have 
been no studies connecting FRP or smoke emissions to weather radar retrievals.

This work investigates the potential for weather radars to estimate FRP, which can be further used to estimate 
smoke emissions. The following sections describe the FRP and weather radar products used, as well as methods 
to isolate pyrometeor signals from other phenomena and to integrate radar retrievals representing a fire. We show 
results comparing FRP and radar products for multiple fires, discuss sources of discrepancy, and outline conclu-
sions, recommendations for usage, and future directions.

2. Materials and Methods
2.1. Weather Radar Products

Data from NOAA's Next Generation Weather Radar (NEXRAD) system were used. The NEXRAD Weather 
Surveillance Radar-1988 Doppler (WSR-88D) network consists of 160 S-band polarimetric radars across the 
US (Saxion et al., 2011; Serafin & Wilson, 2000), shown for the western US in Figure S1 in Supporting Infor-
mation S1. Scans are performed every 4–12 min, a similar temporal resolution as the satellite FRP scans. Level 
II data corresponding to radar reflectivity, correlation coefficient, spectrum width, and radial velocity was used. 
The data was re-gridded to a cartesian grid of 1 × 1 km 2 horizontal resolution and ∼500 m vertical resolution over 
the domains shown in Figure S2 in Supporting Information S1 using the Python ARM Radar Toolkit (Py-ART) 
(Helmus & Collis, 2016). This was done to be able to search data over vertical columns and to aggregate data 
across equally spaced grids. Radars used for each fire are listed in Table S1 in Supporting Information S1.

The lowest grid cell that the radars can sense without being blocked by topography was determined using the 
radar locations and high-resolution topography (USGS database at 1/3 arc-second) averaged within the radar grid 
cells (contours in Figure S2 in Supporting Information S1), which we refer to as “base” data. “Composite” data 
correspond to variables extracted at the level of maximum radar reflectivity. These extractions were performed 
after selecting data that had a larger potential to be associated with pyrometeors. The criteria were a minimum 
reflectivity of 10 dBZ and correlation coefficient between 0.2 and 0.9 starting from the base level up to a height 
where one of the conditions was not met. These filters are based on previous work (Jones & Christopher, 2009) 
and reduce the possibility of including reflectivity enhancements that are at altitude and also removing rain and 
drizzle echoes, which tend to show correlation coefficient greater than 0.9 (Liu & Chandrasekar, 2000). Corre-
lation coefficient for pyrometeors tends to be below 0.8 (Melnikov et al., 2008; Zrnic et al., 2020). Figures 1b 
and 1h shows examples of this processing, showing the pyrometeor plume is captured when it's present, but there 
are often other features included not related to the fire which are discussed in Section 3.1.

2.2. Fire Radiative Power

Data from the Advanced Baseline Imager (ABI) on the GOES-17 satellite are used as inputs in the Wildfire Auto-
mated Biomass Burning Algorithm (WFABBA) algorithm to derive FRP at ∼5 min intervals (Schmidt, 2020; 
Schmidt et al., 2010) and are used in this study. Fire detections can be separated using quality flags into good 
quality (“processed” flag) data and other more uncertain retrievals (saturated, contaminated by cloud or smoke, 
and high/medium/low probability of fire) with most of them producing a FRP retrieval (Li et al., 2022). Here we 
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computed FRP for each scan (every ∼5 min) by adding all available FRP retrievals over a domain including the 
fire detections (Figure S2 in Supporting Information S1). FRP from each scan was classified into two groups, the 
high certainty ones where more than 50% of the fire detections were classified as good quality, and the rest with 
a lower degree of certainty. Then, hourly FRP was obtained by averaging all scans within 30 min of each hour. 
Hourly FRP values were also divided into two groups and considered to have a high degree of certainty when at 
least three of the scans used to calculate it were classified as high certainty. Night-time FRP were all classified 
as low certainty as is largely underestimated when compared to VIIRS FRP, with daytime values showing good 
performance (Li et al., 2022). The hourly high certainty data is used as the reference for all statistical analysis, but 
both groups are displayed in the time series.

2.3. Wildfires Studied

Nine fires that occurred during 2019 and 2020 in the western US were included in this study (Figure S1 and 
Table S1 in Supporting Information S1). These fires correspond to different environments including four different 
states, relatively flat terrain to complex mountain ranges (Figure S2 in Supporting Information S1), and at various 
distances from radar locations (30–180 km). Some fires were observed by two radars and in these cases the radar 
with better view was selected (noted on Table S1 in Supporting Information S1) depending on the day when it 
crossed topographical features. Some fires (e.g., Cameron Peak, Dolan) had multiple active periods separated by 
dormant conditions in which case different domains of FRP and radar products aggregation were chosen (shown 
in Figure S1 in Supporting Information S1). The fires studied are all considered major events, with final burned 
areas ranging from ∼18k (Williams Flats) to over 150k (Creek) hectares. However, since our analysis focuses 

Figure 1. Maps of visible imagery (a, g, j), composite radar observables (middle and right columns), and terrain height (d) for the Cameron Peak fire domain. Fire 
detections for the corresponding overpass are shown on the visible imagery (a and g corresponds to NOAA-20 VIIRS, and j corresponds to Terra MODIS). The red oval 
in multiple panels represents the smoke/pyrometeor plume.
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on the hourly evolution for fires, multiple periods of low intensity burning are included where FRP is close to 
the lower detection limit of ABI (∼25 MW), allowing us to cover a wide range of FRP values (∼4 orders of 
magnitude).

2.4. Associating Weather Radar Products to FRP

FRP has been found to be proportional to trace gas and aerosol emissions from fires (see Section 1), and thus it 
is reasonable to think that FRP and pyrometeor emissions are positively correlated. However, it is unknown if 
this relationship is linear (like for smoke emissions) or non-linear, since not all biomass burning debris may be 
suspended as pyrometeors (e.g., some ash remains on the ground) and that the fraction and size distribution that 
is suspended might be a function of fire behavior and environmental conditions (Ward, 1990).

Weather radars measure reflectivity (Z, mm 6 m −3) which has been used to estimate rainfall rate (R, mm/h) using 
the Z-R relationship Z = A R b, where A and b are empirically determined constants (Stout & Mueller, 1968). The 
power-law form of the Z-R relationship can be derived theoretically by assuming an exponential drop size distribu-
tion and expressing Z, R, and the drop terminal velocity as a function of this distribution (Burgess & Ray, 1986). 
In an analogous way, if the size distribution of pyrometeors was known, it could be used to derive the form of the 
relationship between reflectivity and pyrometeor fall rate. However, the underlying distribution of pyrometeor 
number concentration has not been established (McCarthy et al., 2019). Thus, here we test two plausible assump-
tions. First, an exponential distribution is assumed motivated by the linearity in the log-log space found by multiple 
studies measuring pyrometeors in-situ (Kingsmill et al., 2023; Peterson et al., 2022; Radke et al., 1991), in which 
case a relationship of the form of Z-R can be assumed. As a priori there is no information on what A and b should 
be for pyrometeors, for simplicity and to investigate the fit to FRP we use the Marshall and Palmer (1948) relation-
ship (Z = 200 R 1.6) typically used for stratiform rain, referring to it as “equivalent rainfall.” Second, a log-normal 
distribution is assumed motivated by the similarity of aerosol size distributions with that of wood ash size distri-
butions (Fusade et al., 2019; Grau et al., 2015), which is believed to be the dominant fraction of pyrometeors 
(McCarthy et al., 2019). In the log-normal case, it can be shown that a linear relationship between Z and R rate is 
obtained (Text S1 in Supporting Information S1), and thus we assume Z and pyrometeor fall rate are proportional.

Finally, due to mass conservation and assuming pyrometeor falling happens in timescales shorter than an hour, we 
assume that the pyrometeor emission rate can be approximated by the fall rate integrated spatially over the whole 
pyrometeor plume. A caveat of this assumption is that this integration includes the leading portion of the plume 
characterized by pyrometeor lofting. This region is driven by the fire-generated updrafts that are often >10 m/s and 
where pyrometeor fall velocities are considered negligible (Clements et al., 2018; Kingsmill et al., 2023). Thus, 
this lofting region is expected to be a small fraction of the overall plume area as it will take much longer for the 
pyrometeors to fall than to be lofted and thus its inclusion is not expected to impact the integration considerably.

In summary, we investigate relationship of the form:

FRP = 𝐹𝐹

(

∑

plume

𝑍𝑍

)

 

where F is a function to be determined by the analysis. While this equation assumes a log-normal size distribu-
tion, Z is replaced by R when using equivalent rainfall rate for the exponential size distribution assumption. In 
other words, we investigate the association between the radar derived products that are proxies for pyrometeor 
emission rate (integrated equivalent rainfall and reflectivity) and FRP. When integrating spatially for each scan, 
equivalent rainfall is multiplied by the grid cell area (1 km 2) resulting in units of m 3/h so results are independent 
of the grid size chosen, while the same is done for reflectivity resulting in units of mm 6/m. Similarly to FRP 
aggregation, values for all scans within each hour are averaged to obtain hourly values, which are in the same 
units as the per-scan values. There are examples of both composite and base scans used for rainfall estimation 
(e.g., Fulton et al., 1998; Zhang et al., 2011), so here we also test both for equivalent rainfall and reflectivity.

3. Results
3.1. Analysis for Individual Fires

The Williams Flats fire occurred on terrain conditions that are relatively of low complexity (Figure S2l in 
Supporting Information S1), with a nearby radar (80 km), and with little blockage from topographic features 
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(290 m on average, the lowest within the fires studied). Thus, it allows us to assess associations between FRP and 
integrated radar products under optimal conditions. Additionally, it's a well-studied fire as the FIREX-AQ field 
campaign sampled it multiple times (Warneke et al., 2023; Ye et al., 2021). Figure 2a shows a strong association 
between the higher certainty FRP and composite equivalent rain (R 2 of 0.85 for the linear fit), with the correlation 
also being strong for the other integrated radar products (0.81–0.83 R 2). In some periods of high FRP values, the 
FRP time series shows multiple gaps which are due to cloud cover (based on satellite imagery) where the radar 
product provides retrievals that could be used to fill in these gaps. The Williams Flats fire generated multiple 
pyro-cumulonimbus around 06 UTC on 8 September and 00 UTC on 9 September (Peterson et al., 2022) which 
could contribute to FRP blockage and result in the apparent overprediction of composite equivalent rain during 
these times.

Although filters were applied to isolate pyrometeor signals (Section 2.1), this was not sufficient for the Cameron 
Peak fire as enhanced radar signals are found for periods with low and no fire activity (Figure 2b). These signals 
appear to be of two types. First, the ones that appear throughout the day adding a background level to the inte-
grated radar products (Figure 2b) and that tend to be isolated features associated with topographic peaks (e.g., 
compare non-pyrometeor enhancements in Figure  1b to peaks in 1d). These features are likely associated to 
echoes from these peaks and we refer to them as ground-clutter (GC). Second, there are substantial enhance-
ments that tend to happen only at nighttime and are limited to some days (e.g., Figure 2b, September 3–7), and 
are widespread across the domain (Figure 1h). These are likely associated to anomalous propagation (AP) due to 
superrefraction of the radar beam from ground targets happening under strong vertical gradients of temperature 
and moisture close to the surface that can be generated by nocturnal radiation cooling (Fulton et al., 1998; Zhang 
et al., 2011). These two phenomena (GC and AP) appear in the majority of the fires studied (Figure S3 and Table 
S1 in Supporting Information S1) and greatly contaminate the pyrometeor signals.

We observe that the radar products other than reflectivity (correlation coefficient, spectrum width and radial 
velocity) tend to show values for pyrometeors that are distinct from the signals for GC (Figures  1b, 1c, 1e, 

Figure 2. Left panels: Hourly averages of integrated composite equivalent rain (blue and cyan, left axis) and FRP (red, right axis) for the Williams Flats fire (August 
2019) and Cameron Peak fire (September 2020). The cyan and blue lines represent composite rain aggregated before and after filtering radar data using the machine 
learning classifier. The red solid lines and dots represent FRP with higher and low degree of certainty, respectively (see Section 2.2). The red-shaded polygons represent 
the range between the maximum and minimum FRP values over each hour. (c) Scatterplot of integrated composite rain (after filtering) and FRP for multiple fires (see 
main text). The red line represents a power law fit. (d) Parameters of the power-law fits (FRP = a X b) for multiple radar observables (X).
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and 1f) and AP (Figures 1h, 1i, 1k, and 1l). For instance, pyrometeors tend to have low correlation coefficients 
indicative of non-spherical particles, and low spectrum width away from the fire-generated updrafts representing 
settling particles not greatly affected by turbulence. Thus, we trained a machine learning model to classify 3D 
radar reflectivity as either corresponding to pyrometeors or not. We created a training set specifying times and 
regions within each radar domain that likely corresponded to pyrometeor and GC/AP (Table S2 in Supporting 
Information S1) by manually looking at maps of radar products, terrain height, and satellite imagery for each 
fire as shown in Figure 1. Note the training set corresponded to a small fraction of the data, for instance, 3 and 
15 hr of pyrometeor and non-pyrometeor data, respectively, were used for the Cameron Peak period shown in 
Figure  2b. We used a logistic regression binary classifier implementing a stochastic gradient descent solver 
(Langford et al., 2009) available in Matlab through the “fitclinear” function (The MathWorks Inc, 2020). This 
algorithm generated similar results to other more advanced methods (e.g., support vector machines, random 
forest) but at a much lower computational cost when training and classifying. The values corresponding to pyro-
meteors and non-pyrometeors for each radar product often varied across fires, and thus a different classifier was 
trained for each fire, domain, and radar. The classifier was used for all grid cells that passed the initial filter 
(Section 2.1) and the ones classified as pyrometeors were used to recompute base and composite fields and the 
integrated equivalent rainfall and reflectivity. The classifier was effective at removing GC/AP for the Cameron 
Peak fire (Figure 2b, Figure S4 in Supporting Information S1) removing most non-pyrometeor signals for low 
fire activity and generally being effective for scenes with overlapping large fire activity and AP (e.g., September 
6–7). Association between integrated radar products and FRP increased substantially after the application of the 
classifier (e.g., R 2 of the linear fit increased from 0.17 to 0.75 for Cameron Peak). This was generally the case for 
all other fires studied (Figure S3 in Supporting Information S1).

There are other reasons influencing the degradation in the association between FRP and integrated radar products. 
The Walker fire occurred in a valley surrounded by mountains (Figure S2k in Supporting Information S1) which 
block radar signals from the KBBX radar (Figure S1 in Supporting Information S1) missing most of the plume 
(not shown). The KRGX radar is less blocked, but it's elevated with respect to the valley floor where the fire 
occurred (2,528 m vs. 1,200–1,800 m). This geometry results in days of low fire activity and the decaying part 
of the diurnal cycle not being captured by the radar products (Figure S3l in Supporting Information S1). Despite 
this, days with stronger smoke activity are detected during periods of FRP gaps or low-certainty FRP (Figure 
S3l in Supporting Information S1), thus making it still complementary even under these conditions. Periods of 
the Creek fire also show the integrated radar products missing the decaying part of the diurnal cycle (Figure S3e 
in Supporting Information S1) as the fire was burning in the inner parts of the valley that increased chances of 
blocking (Figure S2e in Supporting Information S1). Another potential issue is that of elevated features passing 
over the fires that have values of radar products similar to pyrometeors, such as is the case of chaff (Kurdzo 
et al., 2023; Zrnić & Ryzhkov, 2004). The composite equivalent rain for the SCU fire shows a peak on Aug 20 
around 00 UTC during a period of mostly high certainty FRP that's in a decaying phase. The National Reflectivity 
Mosaic (https://www.ncei.noaa.gov/maps/radar/) shows widespread enhanced reflectivity that moves through the 
region and over the SCU fire around 00 UTC (Figure S5 in Supporting Information S1). While this is an elevated 
feature, since the fire was intense during this period, it coupled vertically to the pyrometeor plume, significantly 
enhancing the integrated radar products. Thus, future work should integrate chaff classification algorithms (e.g., 
Kurdzo et al., 2017; Yu et al., 2016) to assess if these signals can be automatically removed.

A common feature occurring on multiple fires is that FRP values start being classified as low certainty during 
periods of extreme fire behavior (e.g., Figure 2b). One notable case is that of the CZU fire where no FRP was 
retrieved for 6 hr during the day of largest growth (Figures S2f and S3f in Supporting Information S1). Another 
extreme case is the Creek fire which burned ∼33k hectares during the first two days, and during this period FRP 
is mostly unavailable or has low certainty and appears to be drastically underpredicted (Figure S3d in Supporting 
Information S1). The integrated radar products show robust signals and have potential to provide FRP estimates 
during these periods, although this needs to be verified with future work.

3.2. Combining Multiple Fires

Multiple fires studied here were combined to assess if robust relationships can be derived to estimate FRP based 
on integrated radar products. The Walker and Creek fires and the period around 00 UTC on Aug 20 for SCU 
were left out for this calibration due to the issues discussed in Section 3.1. Also, only high certainty FRP data 
were used.

https://www.ncei.noaa.gov/maps/radar/
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Figure 2c shows the scatterplot of the composite equivalent rain versus FRP, showing a relationship that appears 
linear in the log-log space for FRP values above ∼500 MW. A power-law fits the data well with a R 2 of 0.76. 
Similar R 2 values are obtained when using the other radar derived products (0.67–0.74, Figure 2d). The fact that 
a single relationship fits each of these data sets well when including fires that are diverse in terms of their region, 
fuels, topography, and radar coverage is very encouraging. Sensitivity of the power-law fit to the exclusion of 
each fire shows that the fit coefficients generally remain within the confidence range of the original fit parame-
ters (Tables S3 and S4 in Supporting Information S1). Also, similar statistical metrics are obtained when using 
data from each fire to evaluate the power-law fits calibrated with and without these fires (Table S4 in Supporting 
Information S1), showing the robustness of the fits.

We find positive correlations between pyrometeor plume area and FRP (0.59 R 2 for the power-law fit, Table 
S3 in Supporting Information S1), which is consistent with previous results for plume area and fire area (Price 
et al., 2018) as FRP and burned area are often correlated (Thapa et al., 2022). However, the fits to FRP are signif-
icantly more skillful for the reflectivity/rain based metrics derived in this work (Table S3 in Supporting Infor-
mation S1) and are recommended for future use. Also, the use of reflectivity/rain reduces errors for large plumes 
that might not be fully contained in analysis domain, as the reflectivity close to the fire for these cases goes up to 
20–30 dBZ and thus are one to two orders of magnitude larger than the values on the edges (that approach ∼10 
dBZ) that would weight much less when integrating over the plume.

The association between integrated radar products and FRP fades below 500 MW (Figure 2c). One explanation 
is that a certain level of lift is needed to generate pyrometeor particles, and thus highly variable environmental 
factors not associated with the fire might play a more important role for low intensity fires. Another contributor 
could be that pyrometeors from low intensity fires are more likely to be found close to the surface, increasing the 
chance for ground contamination. Thus, the usage of FRP radar estimates below 500 MW is not recommended. 
However, below 500 MW many of the issues making satellite FRP retrievals uncertain (e.g., instrument satu-
ration, pyro-cumulonimbus or thick smoke obscuring detections) are less likely and can be used more reliably.

It is worth noting that for both equivalent rain and reflectivity the exponent of the power law fit is below 1 with 
a narrow confidence interval (Table S3 in Supporting Information S1). This can be interpreted as pyrometeor 
emissions having a superlinear relationship with FRP. This is reasonable, as FRP likely controls the production of 
potential pyrometeor particles linearly (as it is the case for smoke emissions, see introduction) but on top of that 
the chance for stronger updrafts increases with larger FRP (e.g., Thapa et al., 2022), which are expected to lift 
more and bigger particles and thus increasing pyrometeor emissions even more. Future work should use theory 
and physics-based models to provide further understanding on these relationships and to include the effects of 
regional meteorology on them.

While similar results are obtained for different radar products, composite variables tend to consistently show 
better statistical metrics compared to their base counterparts, including higher correlation, lower errors, and 
higher fraction within factor 2 (Table S3 in Supporting Information  S1). Potential reasons include reducing 
ground artifacts when reflectivity maxima are elevated and better capturing large reflectivity peaks that might be 
associated to larger FRP. Thus, we recommend the usage of composite variables moving forward. On the other 
hand, there is no clear difference in whether equivalent rain or reflectivity should be integrated. This choice of 
variable was associated with the assumed pyrometeor size distribution which is unknown (Section 2.4), but for 
the purpose of this work, the choice seems to be playing only a minor role in the results.

4. Conclusions and Future Directions
In this work we build a framework to estimate hourly FRP using weather radar products and test it for multiple 
fires over the western US during 2019–2020. We hypothesize that FRP is expected to be proportional to radar 
products integrated across the pyrometeor plume. Without strong a priori assumptions, we test proportionality 
to different scan types (composite vs. base) and different radar products (equivalent rainfall and reflectivity). 
Strong correlations between FRP and integrated radar products are found for wildfires under favorable condi-
tions of topography and radar location. However, spurious values appear for fires located in complex topogra-
phy due to ground clutter (GC) and anomalous propagation (AP). We show that these values can be removed 
effectively when using a supervised machine learning algorithm capable of classifying retrievals as pyrometeor 
or non-pyrometeor based on manually selected training sets for each fire. Remaining potential issues include 
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blockage of radar beams by topography, fires occurring below the radar altitude, and features passing above the 
active fires that enhance radar echoes. When combining multiple fires, we find that a power-law fit can explain 
a large fraction of the variability of FRP (0.67–0.76 R 2) and can be used to estimate FRP effectively. While all 
radar products show similar skill, composite values consistently generate better results and are recommended for 
future use. While relationships are not valid for FRP <500 MW, they show potential to fill-in cloud-related gaps 
and to overcome satellite FRP biases occurring during extreme fire events.

Multiple assumptions were made in this work because there are gaps in the knowledge about pyrometeor prop-
erties. Areas of uncertainty include size distribution, speciation (e.g., ash, soil, firebrands, scorched canopy foli-
age), complex dielectric properties (McCarthy et al., 2019), and how these factors change with fire intensity and 
fuel type. Additionally, there is a gap of knowledge on the relationship between smoke and pyrometeor emission 
and how they relate to environmental factors (e.g., wind, humidity). Given that radar data is increasingly being 
used to characterize wildfires, is imperative that future work addresses these gaps. These could include intensive 
observational periods where smoke and pyrometeor properties are measured for fires ranging across different fuel 
and severity conditions. These measurements could be used to develop optical properties calculations for pyro-
meteors and validate models of pyrometeor emissions. We expect this improved knowledge to inform radar-based 
FRP estimates to reduce variability and improve skill.

These techniques have potential to be used in operational smoke forecasting systems to improve smoke emissions 
and injection height. However, a limitation to achieve this objective is the manual selection of data sets to train 
the machine learning algorithm to classify pyrometeors, which as shown is a crucial step to obtain reasonable 
skill for multiple fires. Thus, future work should explore ways to automate this process. Unsupervised machine 
learning has shown to be effective at classifying pyrometeor speciation using a similar set of radar products as in 
this work (McCarthy et al., 2020), and thus similar automated methods could be explored in future applications 
of radar-based FRP estimation. This process will be facilitated by algorithms automatically tracking fire evolution 
using active fire detections (Chen et al., 2022).

While radar-based FRP estimates show promise to improve upon current methods used during extreme fire condi-
tions, the skill of these estimates was not verified here as there are no reliable FRP references for these conditions. 
Thus, this should be assessed by future work using alternative methods. One potential route is to use these new 
estimates to derive smoke emissions, use it as input for an atmospheric composition model predicting smoke, 
and evaluate its results against smoke observations. Finding this model has improved skill compared to simula-
tions using satellite FRP as emission driver will support future use of this approach for extreme fire events. This 
work would be facilitated by the fact that multiple metrics for model evaluation of smoke predictions have been 
established using ground-based, airborne, and satellite observations (Ye et al., 2021), and because satellite smoke 
retrievals have been found to be accurate during periods of extreme fires as the ones studied here (Ye et al., 2022).
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